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We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers.
The free energy of these networks is obtained from the force-extension characteristics of the individual
polymers and their persistent directionality through the crosslinks. A Monte Carlo scheme is employed to
obtain isotropic, homogeneous networks that minimize the free energy and for which all of the relevant
parameters can be varied: the persistence length and the contour length as well as the crosslinking length may
be chosen at will. We also provide an initial survey of the mechanical properties of our networks subjected to
shear strains, showing them to display the expected nonlinear stiffening behavior. Also, a key role for non-
affinity and its relation to order in the network is uncovered.
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I. INTRODUCTION

Networks of semiflexible polymers have become one of
the focal points in current soft-matter research. The reason
for this interest is twofold: on the one hand, most relevant
structural biological materials, both intra- and extracellular,
share the common architecture of crosslinked semiflexible
polymer networks. Two archetypical examples are the cy-
toskeleton and the extracellular matrix. At the same time,
there is a widespread realization that semiflexible networks
represent an interesting soft-matter system in their own right,
outside of any biological context, resulting in a much more
fundamental interest in the microscopic and geometrical ori-
gins of their mechanical behavior.

The mechanoelastic characteristics of networks of semi-
flexible polymers have been studied to analyze and charac-
terize different types of these networks, both in vivo �1� and
in vitro �2�. The contributions of theory have been many and
insightful, but analytical progress has typically only been
possible in certain limiting cases where simplifying assump-
tions may be believed to hold, most notably the assumption
of affine deformations �3,4�. At the same time, computer
simulations have been used to study these networks, but they
too have had to rely on simplifications—either reducing the
system to two dimensions and limiting to the small-strain
regime �5,6� or ignoring the nonlinear nature of the constitu-
ent filaments �7,8�.

We believe that the time is right for more realistic numeri-
cal modeling of these networks that allows for a detailed
microscopic look at the relations between structure, geom-
etry, and mechanical properties. To this end, we present a
computer model to simulate these semiflexible polymer net-
works in three dimensions. Networks are considered to con-
sist of filaments, described as semiflexible polymers. These
filaments are crosslinked in various locations, which might
induce extra bending of filaments, thus increasing the free

energy of the system. We start with a homogeneous, isotropic
initial random network with a high free energy and employ a
Monte Carlo scheme to relax this network. This approach
allows us to generate realistic three-dimensional networks
containing hundreds of crosslinks, which are nonetheless
well equilibrated and thus represent realistic initial condi-
tions for further mechanical loading in three dimensions. The
methodology to generate such networks is the first main re-
sult presented in this paper and is described in the first part
of the paper �Sec. II�.

In the second part of this paper �Sec. III�, we subject these
networks to shear and analyze their behavior as a function of
the network parameters: e.g., the stiffness and the length of
the filaments. The results of these computer experiments are
compared with experiments to validate our model and yield
novel predictions for the mechanical behavior of semiflexible
networks.

II. NETWORK GENERATION AND EQUILIBRATION

We begin our discussion with a detailed look at the gen-
eration of our semiflexible networks based on single polymer
energies and how the Metropolis Monte Carlo scheme is
implemented and adapted for our specific purposes.

A. Network free energy

The networks considered in this paper consist of fila-
ments, which are linked by crosslinks i=1, . . . ,Nc. Figure 1
shows a schematic representation of a part of the network,
indicating important parameters of the network and the no-
tation used. Each filament is an inextensible semiflexible
chain, whose energy in the presence of an external force is
given by

Efil = �
0

lc ��

2
� dt̂�s�

ds
�2

+
f

2
�t̂�s��2	ds , �1�

where s is the arclength coordinate running along the fila-
ment, � is the bending stiffness which is related to the per-*lhuisman@lorentz.leidenuniv.nl
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sistence length lp as �=�−1lp, with �=1 / �kbT�, t̂�s� is the
�unit� tangent vector along the filament, and f is the applied
force, directed along the end-to-end vector of the polymer.
The filamentous contribution to the total energy of a network
is the sum of the energies of all filaments. In this work we
consider inextensible filaments, thus ignoring backbone
stretching of the filaments, a deformation that is only rel-
evant at high forces for most biopolymers.

A brief note on our nomenclature: our networks consist of
�multiply� connected filaments. Each of these filaments is
partitioned into segments, which begin and end in crosslinks.
A filament can thus consist of many segments, but is always
a single mechanical entity, satisfying persistence not just at
the segment level but also through crosslinks.

Each crosslink connects segments of two filaments, and
our networks are therefore strictly tetrafunctional—albeit
with the possibility of dangling ends which are discarded �we
do not take steric avoidance into account�. Compared to the
other scales in the network, crosslinks are assumed to be
exceedingly small so that their only action, effectively, is to
force a binary bond between two distinct filaments or remote
regions of the same filaments.

In our computer simulations, we store a complete list of
all positions x�i of the crosslinks, a complete list of the con-
tour lengths lc,ij of the segments between crosslinks i and j,
and a connectivity table which lists which segments are
linked by each of the crosslinks. We do not keep track of the
spatial configuration of a segment between two crosslinks.
Instead, we use the exact radial distribution function as com-
puted from Eq. �1� �9� to assign to each segment a contour
length drawn from the radial distribution function computed
at the segment’s end-to-end length and persistence length. In
this manner, we can already perform an important part of the
full ensemble sampling in a straightforward manner: differ-
ent assignments of the contour lengths correspond to differ-
ent realizations of semiflexible networks with a prescribed
spatial distribution of crosslinks. The relative likelihood of a
given distribution of lengths is computed from the free en-
ergy of the resultant network, which we compute as follows.

For a given network realization we partition the free en-
ergy in an internal segment part F2 and an intersegment part
E3. As stated above, the internal degrees of freedom of the

segments are integrated out. Thus, we express the free energy
of a segment as a function of the distance between the
crosslinks �rij� and the length of the segment �lc,ij�. If the
applied force f in Eq. �1� is positive �i.e., stretching the fila-
ment�, F2 can be computed from Eq. �1� by employing a
semiflexible analog of the Marko-Siggia interpolation for-
mula �11�; an expression for this is given in the next section.
The semiflexible wormlike chain �WLC� force-extension for-
mula is not particularly accurate for negative forces, as the
filaments quickly assume configurations with considerable
transverse displacements under compressive loading. The
crucial feature of compressive loading, however, is that the
forces involved are always considerably smaller than those
encountered for extensional loads—indeed, this asymmetry
in the force extension curve is responsible for many me-
chanical features of semiflexible networks. For negative
forces, we find that the force extension is adequately de-
scribed by an exponential approach to the asymptote set by
the classical Euler buckling force. Integrating the force-
extension curve yields the following expression for the en-
ergy:

�F2

= 
−
9g�rij�2�5 + 6g�rij��

− 1 + 6g�rij�
if f � 0,

��−
1

90
�− 1 + exp�90g�rij�/�2�
�4 + �2�� if f � 0,�

�2�

where g�rij� is the scaled extension given by

g�rij� = − lp/lc,ij + 1/6 + lprij/lc,ij
2 . �3�

These equations are not only computationally convenient;
they also provide an excellent fit to the full, analytical force-
extension curves as shown in Fig. 2�a�, where we plot the
force versus the scaled extension g�rij�. In addition to the
single-segment force extension, we also need to keep track of
their persistence through crosslinks. There is no analytical
formula for this contribution, and we have therefore simu-
lated many individual filaments to obtain a reliable numeri-
cal expression for this contribution. If the applied force f in
Eq. �1� is positive �i.e., stretching the filament�, it turns out
that we can capture the essential behavior by

�E3 =
lp�ijk

2

lc,ij + lc,jk
, �4�

where lc,ij
and lc,jk

are the contour lengths of the segments
and �ijk is the angle between the two end-to-end vectors of
the segments. Note that this contribution to the total energy
is not accompanied by an entropic contribution, since it is
defined by explicit variables in our network.

To assess the quality of the segment-segment energy
function, we compare the distribution function of this
energy with simulations. We simulate a single wormlike
chain of length Lw, at a fixed temperature and a persistence
length lp, and count the probability Pwlc��� of an angle �
between the vectors r�Lw

−r�N and r�N−r�1. Here, N is anywhere

FIG. 1. Schematic presentation of �part of� a semiflexible net-
work, in which lines indicate the filaments and dots the crosslinks.
The section of the filament between crosslinks i and j has length lc,ij

and end-to-end distance rij. � jkl denotes the angle between two end-
to-end vectors of neighboring segments along the same filament.
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on the chain. Our approximate expression for this probability
is Papp����N�lp / �lc1

+ lc2
��� exp�−�E3����, in which the

energy E3 is given by Eq. �4�, and N�lp / �lc1
+ lc2

�� is a nor-
malization factor. This histogram is plotted in Fig. 2�b�.
Although the correspondence is not perfect, this formula
does reflect the essentials of the angle distribution, capturing
the broadening and shift of its peaks.

In summary, we attribute to a specific network configura-
tion an energy which is the sum of single-segment energies
given by Eqs. �2�, plus a sum over all segment-pair energies
given by Eq. �4�, which runs over all pairs of segments be-
longing to the same filament and meeting in the same
crosslinks.

B. Interpolation formula for the segment free energy

Equation �1� enables us to derive an analytic approxima-
tion for the semiflexible force-extension relation. To simplify

notation, we will pass to dimensionless quantities, rescaling
all forces by a factor of lc

2 /� and all lengths by lp / lc
2. Based

upon Eq. �1�, we can express the scaled difference between

the total rescaled length of the polymer �l̃c� and the end-to-

end length at rescaled force 	 �l̃	� as �4�

l̃c − l̃	 =
1

�2 �
n=1



1

n2 + 	
, �5�

which gives

l̃c − l̃	 =
− 1 + �	 coth �	

2	
. �6�

At zero force this gives l̃c− l̃0=1 /6. With this, we can define
the differential extension at force 	 �i.e., the incremental

extension compared to that at zero force� as �l̃= l̃	− l̃0. We
use these equations to construct an interpolation formula for
	�r , lc , lp�, which is the direct analog of the Marko-Siggia

interpolation for the WLC formula �11�. Around l̃0, Eq. �6�
gives as a first-order approximation:

	 = 90�l̃ . �7�

In the large force regime we can expand Eq. �5� to yield

	 =
1

4�1/6 − �l̃�2
. �8�

Tying the two asymptotes together yields

	 = − 18�l̃ +
1

4�1/6 − �l̃�2
− 9, �9�

which can be integrated once to yield Eq. �2�. Figure 2�a�
shows the comparison between this formula and the exact
solution—the difference between the two does not exceed
6%.

C. Network generation

The task at hand is obviously to determine network con-
figurations that minimize the free energy thus defined. To
this end, we use a Monte Carlo minimization scheme: start-
ing from an isotropic, random network, we propose random
changes in topology, each of which is either accepted or
rejected according to the Metropolis criterion.

The initial network is constructed by placing m nodes
with random coordinates in a cubic periodic cell. To connect
these nodes into a fourfold-coordinated network, we proceed
iteratively: we begin by identifying three nodes which are
close to each other and connect these with a loop of three
bonds. This loop is then extended one bond at a time: we
identify a node A which is not fully connected and which is
closest to an existing bond BC and then replace this existing
bond by two bonds AB and AC. This process is repeated until
all nodes are fourfold connected.

In the resulting fully fourfold-coordinated network, each
bond is considered to be a segment of a single, long filament.
This network as a whole can therefore be considered a
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FIG. 2. Validation of our effective Hamiltonian. �a� Analytic
force-extension curve �straight line� �see �10�� versus interpolation
formula of force extension �dotted line�, where f is the force on the
segments and g�r� the relative extension with respect to the equi-
librium configuration. �b� The probability distribution P��� of
the angle � between two segments, for different values of the
lengths l1 and l2, respectively, of the first and second segments,
measured in units of the persistence length lp. In order of decreasing
peak value, the solid lines correspond to �l1 , l2�= �lp /100, lp /50�,
�lp /100, lp /16.7� coinciding with �lp /50, lp /20�, �lp /10, lp /5�, and
�lp /10, lp /16.7� coinciding with �lp /5, lp /2�. The dotted lines are
our theoretical approximations as given in Eq. �4�. Note that curves
for constant lp / �l1+ l2� fall on top of each other, both in the mea-
sured curves and in our approximation.
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single, circular filament which is crosslinked to itself at vari-
ous places. We then proceed to minimize the free energy—
computed as detailed before—of this initial network, using
the standard local minimization method of damped molecu-
lar dynamics.

The initial network will be highly stressed and, in general,
far removed from a realistic equilibrium configuration.
Chiefly, this is due to considerable filament bending, with
intrafilament bends at crosslinks often exceeding 90°. As ini-
tial large strides towards an optimal configuration will pro-
ceed along downhill directions related to the release of pre-
cisely these dominant bending stresses, we first focus on
rearranging the topology of the network, analogous to the
continuous random network approach, pioneered by Wooten,
Winer, and Weaire �12� and further extended and optimized
as detailed in �13�. This is realized by a series of Monte
Carlo moves that alter the topology; these are moves �a� and
�b� in Fig. 3. To the initial configuration with a topology L�
with minimized coordinates x��, we assign a free energy F� as
obtained from Eq. �4� plus a quadratic function around the
average bond distance to prevent crosslinks from clustering
and to tune the final network topology. The average bond
distance determines whether the final network will be
densely or loosely crosslinked. We then change the topology
to L� by one of the moves and relax the network with this
new topology, resulting in the coordinates x�� and a free en-
ergy F�. Depending on the change in free energy �F=F�
−F�, the topological change is accepted or rejected, using the
Metropolis algorithm. Note that in this stage, we assume that
the free energy of a network with minimized crosslink coor-
dinates is representative for the free energy of all networks
with the same topology up to some additive constant that is
topology independent.

Once such topology-altering moves no longer signifi-
cantly affect the overall energy—this typically happens in

configurations where the bending angle of the filament in
each node is on average around 20°—contour lengths are
attributed to the segments. As explained, for a segment AB
with end-to-end distance rAB, the length lc,AB is drawn from
the corresponding distribution for the WLC formula with the
desired persistence length lp. Next, we chop up the single
continuous filament into many smaller ones by random dele-
tion of segments under the constraint that all crosslinks stay
connected up to the point where the desired number of fila-
ments �or, alternatively, mean filament length� is reached.
This network is then further equilibrated with the Monte
Carlo moves �b� and �c� shown in Fig. 3, each of which is
now accepted to a comparable degree. To avoid computa-
tional instabilities for floppy filaments we add a short-range
repulsive force between crosslinks. A typical network gener-
ated with this approach is shown in Fig. 4.

III. MECHANICAL RESPONSE OF THE NETWORK

The ultimate goal is to understand the relationship be-
tween the structure of a network and its mechanical proper-
ties. In the following sections, we explore some of the basic
mechanical properties of our system in an attempt to check
whether well-known behavior is correctly reproduced and
simultaneously to offer a glimpse of the relevant microscopic
processes that we are now able to study in detail and their
role in the overall mechanics.

The behavior of biopolymer networks under strain de-
pends on many experimental parameters, such as the concen-
tration of biopolymer, the amount of capping proteins, and
the concentration and characteristics of binding proteins. In
our simulations, we can reproduce such changes by varying
the crosslinking length, the persistence length, and the aver-
age number of crosslinks per filament. In this paper we con-
sider networks that consist of 103 crosslinks connecting 2

103 segments. Periodic boundary conditions are applied in
all three directions. We do not take into account the contri-
butions of the dangling ends of filaments; nor do we consider

FIG. 3. Schematic representation of the three Monte Carlo
moves. �a� Four crosslinks that are connected as shown in the above
figure are randomly selected in the network. Bonds AB and CD are
broken, and bonds AC and BD are created, such that the configu-
ration of the lower figure is formed after energy relaxation. �b� A
crosslink is randomly chosen at which crosslinks A and B are part
of the same filament, as are crosslinks C and D �above figure�. Now
A and C become part of the same filament as do B and D. This
alters the three-crosslink free energy E3. �c� A randomly chosen
length �dl� is removed from the length of one segment of a filament
and transferred to a neighboring segment of the same filament, such
that the configuration of the lower figure is formed after relaxation.

FIG. 4. �Color online� Representation of a generated network.
This network consists of 333 filaments, each on average crosslinked
6 times. The network is periodic in all three directions. Note that the
undulations of the segments are not represented.
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the excluded volume. Our networks are typically very
densely crosslinked, which implies that filaments which are
close to each other have a high probability to be crosslinked,
and we therefore feel it is justified to assume the crosslinking
constraints to dominate over the effect of entanglements. Ad-
ditionally, most naturally occurring biopolymer networks, as
well as most in vitro biomimetic experiments considered oc-
cur at fairly low polymeric volume fractions, further reduc-
ing the importance of excluded volume. The persistence
length in the networks we use ranges from lp / lc=1 to lp / lc
=16 and the average length of filaments from L / lc=3 to
L / lc=20. The data graphed in this paper are obtained from
single, representative networks as large as practically pos-
sible to minimize the effects of finite system size on the
observables that we measure.

The experimental techniques used to probe the mechani-
cal response are essentially twofold: on the one hand, in vitro
networks are often subjected to global shears in commercial
rheometric setups to characterize their macroscopic vis-
coelastic properties �14,15�. On the other hand, many experi-
ments focus rather on the microscopic processes involved by
injecting small particles ��1 �m� in the network to monitor
the behavior at the filament scale of the network �14,17�. Our
computational method allows us to work at both levels by
direct and simultaneous measurement of the overall stiffness
as well as all individual displacements and forces in the sys-
tem, to high accuracy.

We model shearing by virtually displacing all crosslink
positions affinely by small shear-increments of 0.2%. After
each shear increment we allow for nonaffine relaxation of all
individual crosslinks in order to minimize the free energy of
the network. During this procedure, the forces and displace-
ments are recorded and can be used for further analysis of
the network response. It is important to note that we allow
for full relaxation after each strain increment—this would be
appropriate for adiabatically slow shears and should there-
fore be compared to the zero-frequency limit in oscillatory
rheology, as indeed we shall do.

A. Strain stiffening

To characterize our networks, we first consider the differ-
ential stiffness K=�� /�� during shear. An important and
characteristic feature of these networks is their highly non-
linear stiffening behavior under relatively small shear
stresses �14�. As argued in Ref. �4�, all experimental curves
of the modulus of networks of semiflexible polymers col-
lapse for small shears on a master curve by scaling the stiff-
ness by the initial stiffness �K /K0� and scaling the shear by
its value at which the stiffness is 4 times the initial stiffness
�� /�4�. Figure 5�a� shows the scaled strain-stiffness curves
of our networks under shear, where we plotted the differen-
tial modulus K, as a function of shear for different ratio’s
between lp and lc �the average contour length of the seg-
ments�. We observe the same universal scaled stiffening be-
havior as observed in experiments. For comparison, we plot-
ted the theoretical curve that incorporates the typical force-
extension curve of single filaments combined with the
assumption that the filaments deform affinely, which has

shown to represent this same master curve. Note that we do
not account for rupture and backbone stretching of the fila-
ments, which becomes relevant at larger shears. The inset
shows the original curves, where one clearly sees an increase
in the initial stiffness as well as a small decrease in the strain
at which the networks start to stiffen by increasing the stiff-
ness of individual filaments. In our simulations, lp / lc�16 is
more or less comparable with an actin network with an av-
erage distance between crosslinks of 1 �m and an average
filament length of 6 �m. Smaller values of lp / lc represent
networks of filaments with a lower persistence length like
fibrin or networks that are less dense.

Another way to compare our results with experiments is
to look at the scaling in the large strain limit. By superposi-
tion of a small oscillatory stress on a prestress, the differen-
tial modulus can be experimentally measured. From these
measurements it is known that K��1.5 for large stresses �
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FIG. 5. �Color online� �a� Master curve of scaled differential
modulus as a function of scaled shear strain � /�4, where �4 is the
strain at which the modulus is 4 times the initial modulus K0. For
the curves shown, the average number of crosslinks per filament is
L / lc=6. The values for the scaled persistence length lp / lc used are
15.7, 3.81, and 0.77, of which only the latter is distinguishable at
large strains �dotted blue line�. Besides, we plotted the scaling from
affine theory, which overlaps with the other curves. The inset shows
the original strain-stiffness curves, from top to bottom with scaled
persistence lengths of 15.7, 3.81, and 0.77. Note that we plot all
data points and draw a curve through them. However, a couple of
the data points lie well outside the curve �see Sec. III C�. �b� Dif-
ferential modulus of the networks as a function of the scaled shear
stress � for 18 networks with varying lp / lc and L / lc.
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�16�. We plotted K /K0 versus � /�c, where �c is the critical
stress, defined as the intersection between the horizontal low-
stress regime and the high-stress asymptote. As shown in
Fig. 5�b�, all our networks show the same characteristic scal-
ing behavior at large shears. Combined with the observed
stiffening, this indicates that we capture the essential physics
in our model, both at small and large shears.

Equation �7� indicates that the initial stiffness of indi-
vidual filaments scales as K0,fil� lp

2 / lc
4. We expect this scaling

behavior to change when the filaments are placed in a net-
work that allows nonaffine reorientations, as is the case in
our simulations. Since all filament properties scale with lp / lc

2,
we plot K versus lp / lc

2; see Fig. 6�a�. The figure shows that
K0��lp / lc

2�1, which emphasizes that for nonaffine deforma-
tions the persistence length of the constituent filaments is
less important for the overall network behavior, as filament
reorientations allow for an alternative route to comply with
the imposed strains. For increasing �, the steepness of the
slope increases, which strongly correlates with the stiffening
of the networks.

From experiments �17,18� and simulations �8,19� it is
known that the average filament length influences the net-
work response. In cells, many capping proteins are active
that can control the length of the filaments, thus changing the
mechanical properties. We measured the initial stiffness K0
as a function of the average filament length L and lp. L / lc can
be considered as the average number of crosslinks on a fila-
ment, which we can vary while keeping lc constant. As
expected, Fig. 6�b� shows a decrease in K0 if the average
filament length decreases. Segments of the same filament

influence each others displacements, thus restricting the free-
dom to adapt to stresses. Besides, when crosslinks connect
two or three segments instead of four, these crosslinks are
more flexible to reorient when sheared. Therefore, networks
with short filaments are softer during shearing.

Figure 6�b� also shows that the stiffness becomes nearly
zero for short filaments, a behavior independent of lp. This
decrease is related to the percolation of the network. When
the filaments become too short, no real network will be
formed. In that case, shearing will shear the liquid in which
the filaments are immersed, but the filaments will not be
constrained in their movement and thus the stiffness will
vanish. Note that we employ a specific procedure to remove
material from the network to generate increasingly sparse
networks, which implies that the filament length at which the
modulus vanishes cannot be directly related to experiments.
The overall trend, however, is representative of real net-
works.

B. Nonaffine behavior and ordering

While the system deforms in our simulations, we allow
for nonaffine reorientations of the segments. It has been sug-
gested that such nonaffine deformations greatly alter the me-
chanical response �7�, and indeed we find that this is true.
First, a few words about the definition and measures of non-
affinity. In general, an applied macroscopic strain maps any
material point x in the reference space in the network onto a
new point x� in the target space. The location of the point in
the target space may be thought of as arising from a combi-
nation of an affine deformation and a nonaffine contribution:

x� = ����x + ��x,�� , �10�

where ���� is the deformation gradient tensor, which for the
case we consider—three-dimensional simple shear in the x̂1
direction—is given by

���� = �1 � 0

0 1 0

0 0 1
� . �11�

The observation that the nonaffine contribution ��x ,�� de-
pends both on the applied strain and the �original� location of
the point under consideration immediately raises the question
of what, precisely, it means for a system to be affine. In the
strictest sense, an affine system may be defined as one obey-
ing ��x ,��=0 for all x ,�. This definition, however, is highly
restrictive as it does not allow for any nonaffine motion at
any point. For systems that do behave nonaffinely to some
extent, the most general measure of the extent of this non-
affinity was shown in �20� to be the nonaffinity correlation
function

Aij�x,x�;�,��� = ��i�x,��� j�x�,���� , �12�

where the average �¯� is over all crosslinking points in the
network. Both its spatial dependence and the strain depen-
dence are of interest—in a moment we will investigate the
strain-dependent aspects by focusing on the trajectory that
single points trace out during a deformation. Following �20�,
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FIG. 6. �Color online� �a� Differential modulus K as a function
of lp / lc

2. The three curves correspond to different strains �, from
bottom to top equal to 0.02, 0.10, and 0.20. For all curves shown,
L / lc=6. �b� K at �=0 as a function of L / lc for various lp / lc �upper
line, lp / lc=15.7; middle line, lp / lc=3.81; bottom line, lp / lc=0.77�.
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we shall measure to this end the equal argument limit of the
trace of Aij�x ,x� ;� ,���, which we shall call simply A���:

A��� =
1

�2 ����x,��2�� . �13�

Note that this measure need not approach zero at large
strains, even though one may expect all segments to become
aligned with the direction of maximal strain in this limit and
experience, in effect, a purely extensional strain. The reason
A��� does not tend to zero lies in the fact that even though
the deformation becomes differentially affine, it does not be-
come affine in the absolute sense. To focus on this differen-
tial affinity, which we feel is a more appropriate measure of
�asymptotic� affinity, we introduce a second measure by con-
sidering the differential displacement from the initial point xi
to the final point x f before and after a small strain increment
d�:

x f = ��d��xi + �̃�xi,� + d�� . �14�

We use this to define the differential nonaffinity measure

�A��� =
1

�d��2 ���̃�x,��2�� . �15�

This measure does go to zero as � becomes very large. Later,
our simulations will show that we do not expect this limit to
be attained in experiments as, for realistic parameter values,
the system will have failed long before. A and �A may be
expressed in terms of each other, and the latter tending to
zero implies that, asymptotically, A should become constant,
with the magnitude of this constant reflecting the overall
strength of the past nonaffinity.

Ultimately, we are interested to see to what extent non-
affinity affects the mechanical response. To monitor this in-
fluence, we perform a shear without relaxation after each
strain increment, thus obtaining Kaffine. Figure 7�a� shows
both Kaffine, which is independent of L / lc, and K for networks
with different filament length, all having lp / lc=1. As can be
seen, even for long filaments, the difference between affine
deformation and nonaffine deformation is striking, both for
the initial modulus K0 and for the onset of stiffening. This
puts the so-called linear �i.e., small-strain� regime of network
elasticity in another perspective: even though the strains are
small, there is always a finite amount of nonaffinity which
greatly affects the overall small strain response. It is thus
crucial to understand the role of nonaffinity, even at small
strains, to predict the network modulus.

Even though the Hamiltonian of the network remains the
same, the difference between the strain-stiffness curves is
striking. These differences can only be due to nonaffine be-
havior of the network, as all other determinants—topology,
filament length, density, and persistence length—are identi-
cal. There has been some debate whether the origin of stiff-
ening is ultimately entropic or mechanical, but our results
suggest that, rather, we should focus our attention on the
degree of nonaffinity which acts to delay and attenuate the
stiffening.

To see whether our systems tend to affinity at the largest
strains, we measure the differential nonaffinity �A as a func-

tion of the applied macroscopic strain. To relate �A to other
length scales in the system, we plot �A /rc

2, where rc is the
average distance between crosslinks. Figure 7�b� shows a
strong increase in �A with increasing strain. From the inset
of Fig. 7�b� a strong correlation between the stiffening of the
networks and the amount of nonaffine displacements is re-
vealed. Apparently, to prevent the extreme extension that
filaments would experience at high strains in an affine set-
ting, the network shows a strong nonaffine reorientation. As
indicated before, we expect that for high shear all filaments
will be aligned in the direction of shear and deform purely by
stretching. Since stretching is an affine deformation, we ex-
pect �A to ultimately tend to zero at large strain. This figure
and the inset make it clear that this asymptotically �differen-
tially� affine regime is never actually attained, and nonaffin-
ity will continue to feature prominently all the way up to the
point of failure.

Shorter filaments, or filaments that are less densely
crosslinked, are less constrained in their motions, which
should, in principle, allow for greater nonaffine motions. To
verify whether indeed this is the case, we evaluate the non-
affinity as a function of filament length. To better compare to
existing experiments, we shall use A, the overall nonaffinity
parameter, instead of the differential measure �A. Figure 8�a�
indeed shows a pronounced increase in nonaffinity as the
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FIG. 7. �Color online� Nonaffine behavior of the networks dur-
ing shearing. �a� The differential modulus K measured during affine
deformation �upper, dotted line� and during nonaffine deformation
�from bottom to top: L / lc=5.0, L / lc=8.0, and L / lc=20.0�. For all
networks, lp / lc=0.77. �b� Differential nonaffinity �A as a function
of strain for different lp / lc. For all curves, L / lc=6. To relate �A to
other length scales in the system, we plot �A /rc

2, where rc is the
average distance between crosslinks. A value of 1.0 implies that the
average nonaffine displacement is equal to rc if � were 1.0. The
inset shows the stiffness versus the differential nonaffinity.
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length decreases. This is in agreement with experiments on
f-actin, which also show an increase in A�0� for decreasing
filament length �17�. Translating A�0� to real distances gives
for actin with an average lc=1 �m values between 2 and
6 �m2, which is close to the values between 2 and 10 �m2

reported for experiments �17�. Besides the length depen-
dence, we also observe a dependence of lp on the nonaffinity:
networks of stiffer filaments behave more nonaffinely. This
suggests that, asymptotically, we recover the classical picture
of rubber elasticity �which does very well for long, flexible

polymers, but rather poorly for semiflexible systems�: as the
persistence length decreases, the polymer configurations be-
come increasingly random �i.e., Gaussian�, which is accom-
panied by a decrease in the nonaffinity. This is precisely the
rubber limit: Gaussian polymers deforming affinely. Note
that these nonaffine deformations are the sole possible origin
of the large difference in stiffness between affine and non-
affine deformations shown above. Thus, even though the
magnitude of the nonaffine deformations is small, they do
have an important effect on the network response. This is a
striking example of the value of simulations in this field:
microscopic structure and motion are of crucial importance
to properly understand the macroscopic behavior.

Apparently, the macroscopic result of the microscopic
nonaffinity is to lower the overall stiffness of the system.
This suggests an interesting question: if the filaments do not
go to their affine positions, where do they go? To begin to
answer this, we consider the orientational order of our net-
works and compute the nematic order parameter �, defined
as �= �3 cos2 �−1� /2. Here the average is taken over all vec-
tors connecting crosslinks that are connected by segments of
filaments and � is the angle between such a vector and the
average orientation. An isotropic network has �=0, while a
fully ordered network has �=1. Even when we shear a net-
work affinely, the order will increase from 0 to 1. To appre-
ciate the effect nonaffinity has, we should therefore compare
to the affine ordering. This affine ordering is represented by
the solid line in Fig. 8�b�. The dotted lines show the effect of
nonaffine reorientations on the ordering of the network for
different filament lengths. Interestingly, nonaffine reorienta-
tions tend to increase the order in the network, a behavior
independent of lp.

To get insight into the direction of the ordering, we plot
the distribution of the angle 	 of the end-to-end vectors of
segments with respect to the x axis at �=0.7, as shown in
Fig. 8�c�. By comparing the distribution in a nonaffine net-
work deformation �straight bars� with the distribution of an
affine network deformation �dotted bars� we see that the
nonaffinity increases the number of segments oriented at a
small angle. To appreciate the differences in the two distri-
butions, we plot the analytic expression for the distribution
of an initial isotropic medium that is sheared affinely. Inter-
estingly, the maximum of P�	� coincides with the maximal
extensional strain experienced as a function of angle. As
the figure clearly shows, the additional ordering is in the
direction of maximal extensional strain. This might seem
counterintuitive—the order appears to be increasing in the
direction of increasing filament extensional strain, which
would be highly unfavorable from an energetic point of view.
However, one should keep in mind that nonaffine motions
are not purely rotational: they may encompass additional and
simultaneous overall shifts and extensional and compres-
sional components. It would be most interesting to see if this
increased order is also observed in experiments. Our simula-
tions suggest that systems containing long filaments are the
best place to look for this effect, even though these tend to
display lower overall nonaffinity.

So far, we have considered only the nonaffine motion of
single points. The nonaffinity correlation function is not only
a function of strain; it may also be evaluated for spatially
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FIG. 8. �Color online� Nonaffine behavior of the networks dur-
ing shearing. �a� The scaled overall nonaffinity A /rc

2 at �=0 as a
function of L / lc for persistence lengths lp / lc=0.77 ��� and lp / lc

=15.7 ���. Curves are drawn as a guide to the eye. �b� Ordering
during shearing, after subtracting the value of � at �=0. The solid
line indicates the ordering due to affine shearing. The dotted lines
indicate the ordering during shearing in networks with �from bot-
tom to top� L / lc=4.0, L / lc=6.0, and L / lc=12.0. �c� Distribution of
angles with respect to the x axis, for both an affine deformation
�dotted bars� and a nonaffine deformation �solid bars� at �=0.7. The
curve is the analytic expression for the angular distribution of an
initially isotropic material at shear �=0.7. The inset shows the
sheared box, in which two connected crosslinks are indicated by
dots; their end-to-end vector makes an angle 	 with the x̂ axis.
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separated points x and x�. To this end, we consider �N�r�
= ��r�−r�aff�2�r /��2, where r� is the actual vector between two
crosslinks and r�aff is the vector between the crosslinks if they
would have moved affine during ��. The average, now, runs
over all pairs of crosslinks whose separation is r.

As explained in Ref. �17�, there are two limiting cases in
the behavior of �N�r�. If filaments were stiff rods, the only
way to adapt to strain would be by rotating the whole fila-
ment. In that case, doubling r would double r�−r�aff and thus
�N�r��r2. In the other limiting case, segments along a fila-
ment behave totally uncorrelated, leading to �N�r��r0. The
latter is also the limit for r→
. However, the net effect of
correlated motion of segments along a filament will be
highly sensitive to the actual network configuration.

Figure 9�a� shows �N�r� of a network at different strains.
Note that the larger scatter for small values of r is due to the
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FIG. 9. �Color online� Correlation �N�r /rc� of nonaffine behav-
ior, as a function of distance r /rc, �a� for strains �=0.0 �K=K0,
bottom curve�, �=0.2 �K=4.0K0�, �=0.25 �K=7.6K0�, �=0.29 �K
=25K0�, and �=0.33 �K=260K0, top curve�; �b� for networks with
different lp / lc �solid line, lp / lc=0.77; dash-dotted line, lp / lc=3.81;
and dashed line, lp / lc=15.7�; for all networks, L / lc=6; �c� for net-
works with different L / lc, ranging from 4 to 20. All curves collapse,
except the dash-dotted �brown� curve with L / lc=4. For all net-
works, lp / lc=15.7.
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FIG. 10. �Color online� Illustration of a collective reorientation
in one of our networks with lp / lc=15.7 and L / lc=6 during defor-
mation at, respectively, �=0.268, �=0.270, and �=0.272. The
thickness of the segment indicates the size of its displacement. The
modulus K belonging to the deformation of this network is shown
as the upper curve in the inset in Fig. 5�a�.
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smaller number of pairs of crosslinks. As can be seen, �N�r�
varies with strain: low strains give a low initial value of
�N�r� and a steep increase, while high strains show just the
opposite. This behavior is strongly correlated to the stiffen-
ing behavior shown in Fig. 5�a� �upper line�. The observed
strain dependence of �N�r� is indiscernible when normaliz-
ing with respect to � rather than of ��, which might explain
why experiments report no strain dependence �17�.

We observe a small but systematic dependence on lp, as
shown in Fig. 9�b�. Interestingly, thus far we hardly observe
any length dependence of the correlation in nonaffine behav-
ior, which is shown in Fig. 9�c� for networks with lp / lc
=15.7. For filaments with lp� lc, one would naively expect
that the behavior of segments along a filament will be much
more correlated than the behavior of segments belonging to
different filaments. Thus, one might expect to find increasing
spatial correlations for systems composed of larger filaments.
That we do not see this behavior suggests that it is approxi-
mately balanced by another effect: larger filaments have
more links to the rest of the system and are therefore more
constrained. While the individual segments along a single
filament would like to line up, they become increasingly un-
able to do so. Interestingly, the first experiments to measure
�N�r� do show a length dependence �17�. We cannot rule out
that we will see this behavior at larger system sizes, but for
now are unable to reproduce it.

C. Collective rearrangements

A closer look at Fig. 5�a� reveals some outliers in the K
versus � curve. These discontinuities in K are accompanied
by an increase in A. This is not a glitch, but rather reflects an
interesting microscopic aspect of our networks. To under-
stand this behavior we look at the displacements of indi-
vidual segments during shearing. Figure 10 shows a network
in which the thickness of the segments indicates their dis-
placement during a strain increment of 0.2%. Here we see
what happens: during such a strain increment, a significant
fraction of the segments has a relatively large incremental
displacement in comparison with the average displacement
of segments during shear increments.

The noteworthy feature is not so much that there are large
displacements, but rather that these displacements are local-
ized and occur in correlated fashion. This is reminiscent of
the behavior of so-called collectively rearranging regions,
observed in simulation and experiment in glassy systems and
colloidal suspensions. These events are rare over the time
courses that we have simulated, but may turn out to play an
important role in the long-time behavior of these materials. It
would be most interesting to check whether these events are

also seen in experiments—while these may not be able to
resolve the blip in K, they might be able to register the ac-
companying peaks in A. The weight in determining A of a
reorientation of a certain size decreases with increasing �,
since A measures the total nonaffinity relative to the total
shear. This implies that for small shears, reorientations might
induce huge peaks in A, while these peaks are absent for
larger shears even though the reorientations are still present.

IV. CONCLUSIONS

We have presented a method to generate and deform
three-dimensional networks of biopolymer filaments. By an
adequate choice of energies both the entropic stiffness of
individual segments and the persistence of filaments through
crosslinks can be taken into account. By a Monte Carlo ther-
malization the networks find a local minimum, without fur-
ther interference from our side.

This method enables us to relate the macroscopic network
response to microscopic behavior of individual segments and
crosslinks, at both small and large strains. Although a quan-
titative comparison between experiments and our simulations
is hard to obtain, the first results from these simulations
agree well with experiments. Both the stiffening during
shearing and the length dependence of the nonaffinity are as
expected and fit well into the general framework of the be-
havior of semiflexible polymers. Besides, the stress depen-
dence of the stiffness for large shears is the same as experi-
ments have shown. This confirms that our model captures the
right features that decide the network behavior.

Our model proves an excellent tool to compare affine de-
formations with deformations that allow for nonaffine dis-
placements. We have shown that nonaffine displacements
have a large influence on the stiffness of a network and the
onset of stiffening. This accounts for the important role of
filament length. Besides, the accuracy of analysis of the be-
havior of the filaments during deformation reveals some sur-
prising results that are hard to obtain by experimental analy-
sis. Thus far unobserved, the nonaffinity increases the order
in the networks.

Thus far, we have only considered networks of a single
type of filaments. Both in cells and in the extracellular ma-
trix, the important load-bearing biopolymer networks are
made up of different kinds of filaments: vessel walls are
composed of collagen and elastin, and the cytoskeleton too is
a composite system containing f-actin, intermediate fila-
ments, and microtubules. This method is a promising tool to
explore the behavior of such composite networks under
strain, and we are currently exploring their properties.
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